Page 82 - IDITEC 2020
P. 82

Nº 9 – Año 2020                         IDITEC                        ISSN: 2525-1597


                  Beuchat, L. R. (1977). Functional and electrophoretic characteristics of succinylated peanut flour protein.
                   J Agric Food Chem, 25, 258–261.
                  Biscola V, Rodriguez de Olmos A, Choiset Y, Rabesona H, Garro MS, Mozzi F, et al. (2017). Soymilk
                   fermentation  by  Enterococcus  faecalis  VB43  leads  to  reduction  in  the  immunoreactivity  of  the
                   allergenic proteins β-conglycinin (7S) and glycinin (11S). Benef Microbes, 8(4): 635-43.
                  Blajman  JE,  Zárate  G. (2020)  Hortalizas  y  Legumbres  fermentadas.  Ferrari  A,  Vinderola  G,  Weill  R.
                   Alimentos  fermentados:  microbiología,  nutrición,  salud  y  cultura.  Instituto  Danone  del  Cono  Sur:
                   Ciudad Autónoma de Buenos Aires, 239-71.
                  Campos-Vega  R,  Loarca-Piña  G,  Oomah  BD.  2010.  Minor  components  of  pulses  and  their  potential
                   impact on human health. Food Res Int, 43: 461-82.
                  Chandra-Hioe MV, Wong CHM, Arcot J. 2016. The Potential Use of Fermented Chickpea and Faba Bean
                   Flour as Food Ingredients. Plant Foods Hum Nutr, 71: 90-95.
                  Chau,  C.  F.,  &  Cheung,  P.  C.  K.  (1998).  Functional  properties  of  flour  prepared  from  three  Chinese
                   indigenous legume seeds. Food Chemistry, 61, 429–433.
                  Coda R, Di Cagno R, Gobbetti M, Rizzello CG. 2014. Sourdough lactic acid bacteria: exploration of non-
                   wheat cereal-based fermentation. Food Microbiol, 37: 51-58.
                  Coda  R,  Melama  L,  Rizzello  CG,  Curiel  JA,  Sibakov  J,  Holopainen  U,  et  al.  2015.  Effect  of  air
                   classification and fermentation by Lactobacillus plantarum VTT E-133328 on faba bean (Vicia faba L.)
                   flour nutritional properties. Int J Food Microbiol, 193: 34-42.
                  Coda  R,  Rizzello  CG,  Gobbetti  M.  2010.  Use  of  sourdough  fermentation  and  pseudocereals  and
                   leguminous flours for the making of a functional bread enriched of gamma-aminobutyric acid (GABA).
                   Int J Food Microbiol, 137: 236-45.
                  Código Alimentario Argentino. 1969. https://www.argentina.gob.ar/anmat/codigoalimentario
                  Corsetti A, Gobbetti M, Balestrieri F, Paoletti F, Russi L, Rossi J. 1998. Sourdough lactic acid bacteria
                   effects on bread firmness and staling. J Food Sci, 63: 347-51.
                  Curiel JA, Coda R, Centomani I, Summo C, Gobetti M, Rizzello CG. 2015. Exploration of the nutritional
                   and functional characteristics of traditional Italian legumes: The pontetial of sourdough fermentation.
                   Int J Food Microbiol, 196: 51-61.
                  Czerny  M,  Schieberle  P.  2002.  Important  aroma  compounds  in  freshly  ground  whole  meal  and  white
                   wheat  flour  e  identification  and  quantitative  changes  during  sourdough  fermentation.  J  Agric  Food
                   Chem, 50: 6835-40.
                  Deshpande  SS,  Sathe  SK,  Salunkhe  DK,  Cornforth  DP.  1982.  Effects  of  dehulling  on  phytic  acid,
                   polyphenols, and enzyme inhibitors of dry beans (Phaseolus vulgaris L.). J Food Sci, 47: 1846–50.
                  Di Pasquale I, Pontonio E, Gobbetti M, Rizzello CG. 2020. Nutritional and functional effects of the lactic
                   acid bacteria fermentation on gelatinized legume flours. Int J Food Microbiol, 316: 108426.
                  Dueñas  M,  Fernández  D,  Hernández  T,  Estrella  I,  Muñoz  R.  2005.  Bioactive  phenolic  compounds  of
                   cowpeas  (Vigna  sinensis  L).  Modifications  by  fermentation  with  natural  microflora  and  with
                   Lactobacillus plantarum ATCC 14917. J Sci Food Agric, 85(2): 297-304.
                  Ferreira  LMM,  Ferreira  AM,  Benevides  CMJ,  Melo  D,  Costa  ASG,  et  al.  2019.  Effect  of  controlled
                   microbial  fermentation on nutritional and  functional  characteristics of cowpea bean  flours. Foods, 8:
                   530.
                  Filannino P, Di Cagno R, Gobbetti M. 2018. Metabolic and  functional paths of  lactic acid bacteria  in
                  plant foods: get out of the labyrinth. Curr Op Biotechnol, 49: 64-72.
                  Gabriele  M,  Sparvoli  F,  Bollini  R,  Lubrano  V,  Longo  V,  Pucci  L.  2019.  The  impact  of  sourdough
                   fermentation on non-nutritive compounds and antioxidant activities of flours from different Phaseolus
                   Vulgaris L. genotypes. J Food Sci, 84(7): 1929-36.
                  Gan  RY,  Shah  NP,  Wang  M,  Lui  W,  Corke  H.  2016.  Fermentation  alters  antioxidant  capacity  and
                   polyphenol distribution in selected edible legumes. Int J Food Sci Tech, 51: 875-884.
                  Gänzle MG, Follador R. 2012. Metabolism of oligosaccharides in lactobacilli: a review. Front Microbiol,
                   3: 340.
                  Gänzle MG. 2014. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol,
                   37: 2-10.
                  Gänzle  MG,  Loponen  J,  Gobbetti  M.  2008.  Proteolysis  in  sourdough  fermentations:  mechanisms  and
                   potential for improved bread quality. Trends Food Sci Tech, 19: 513-52.
                  Gobbetti M, De Angelis M, Di Cagno R, Polo A, Rizzello CG. 2019. The sourdough fermentation is the
                   powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in baking
                   industry. Crit Rev Food Sci Nutr, 60(13): 2158-73.
                  Granito M, Frías J, Doblado R, Guerra M, Champ M, Vidal-Valverde C. 2002. Nutritional improvement
                   of beans (Phaseolus vulgaris) by natural fermentation. Eur Food Res Technol, 214: 226-31.



                                                                                                     79
   77   78   79   80   81   82   83   84   85